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ABSTRACT

Demand side management (DSM) has emerged as a promis-
ing way to balance the electrical grid’s demand and sup-
ply in an economical and environmentally friendly manner.
For successful DSM, it is crucial to automate the analysis
of building energy usage with respect to important factors
that drive it, such as occupancy. In this paper, we present
a sensor-driven energy use analysis system, EnergyTrack,
that continuously analyzes, evaluates, and interprets build-
ing energy use in real-time. We develop an energy usage
model in EnergyTrack that simultaneously considers device-
specific energy consumption, occupancy changes, and occu-
pant utility. We also design a low-cost occupancy estimation
algorithm with a lightweight training requirement. The En-

ergyTrack testbed is implemented in a commercial building
office space. Through this testbed, we demonstrate the per-
formance of our occupancy estimation algorithm and the
application of EnergyTrack in energy use analysis.

Categories and Subject Descriptors

H.1 [Information Systems]: Models and Principles; C.3
[Special-Purpose and Application-Based Systems]: Real-
time and Embedded Systems

General Terms

Design,Algorithms,Performance,Measurement

Keywords

Smart Grid, Demand Side Management,Measurement & Ver-
ification, Wireless Sensor Network

1. INTRODUCTION
In recent years, both industry and academia have been

jointly striving to make electrical grids more efficient with
two-way communication of information and control between
electricity suppliers and consumers. Such smart grids facili-
tate demand side management (DSM), which uses monetary
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incentives to encourage consumers to adapt their consump-
tion patterns. DSM has emerged as a promising way to
balance the grid’s electricity demand and supply without in-
creasing the grid’s generation capacity. It may lead to both
economical and environmentally friendly use of electricity.

In order to facilitate DSM, it is crucial to have reliable,
accurate, and verifiable methods to continuously perform
Measurement & Verification (M&V), which is the process
of using measurements to assess the energy consumption for
pre- and post-DSM periods. An international standard [4]
suggests several best-practice guidelines for M&V and cor-
relates energy use to relevant driving factors such as occu-
pancy and weather conditions. In particular, it emphasizes
the importance of Energy Monitoring and Targeting (M&T),
which is the procedure of continuously performing the M&V
process to provide energy managers with constant feedback
to help improve the control of energy use. It is reported that
M&T can typically achieve an additional 7%-12% of energy
savings compared to other one-time M&V methods, by per-
sistent energy saving [4]. Despite its advantage, it is difficult
to seamlessly and correctly practice M&T due to the lack of
low-cost solutions to automate such M&T processes with a
good level of accuracy.

In this paper, we attempt to address the problem by propos-
ing a middleware architecture for a sensor-driven energy
use analysis system, EnergyTrack, that continuously ana-
lyzes, evaluates, and interprets energy usage in buildings
using real-time sensor data. In order to evaluate the effi-
ciency in energy use, we develop an analytical energy usage
model that simultaneously considers device-specific energy
consumption, occupancy, and occupant utility (e.g. comfort
level). Our model allows users to systematically quantify
the useful and wasted energy use by jointly considering oc-
cupancy and occupant utility. It deems more energy to be
wasted when occupancy or occupant utility is low. There
are two major advantages that this model has over existing
models [4], which only consider static baseline consumption
to quantify energy savings. Firstly, our model naturally ac-
counts for the trade-off between energy saving and the im-
pact it has on occupant utility. Secondly, it also favors the
energy spent during periods of high occupancy. These two
features quantitatively incorporate the intuition that energy
usage efficiency of a load is maximized when the maximum
number of concerned occupants experience the highest util-
ity from its operation.

We also develop an occupancy estimation algorithm from
motion sensors and CO2 sensors with knowledge of only
the maximum number of occupants. Compared to exist-



ing training-based techniques, the proposed algorithm has a
major advantage in many practical settings as it relaxes the
requirement of expensive training data sets of occupancy
ground truth. Our proposed middleware architecture and
energy use analysis framework is employed for designing En-

ergyTrack through seamless integration of four sub-system
modules: sensor network, database, data analytics engine,
and user interface. The EnergyTrack testbed is implemented
in a commercial building office space with 90 occupants. In
this testbed, we evaluate the performance of our occupancy
estimation algorithm and demonstrate the application of En-
ergyTrack in energy use analysis.
The rest of this paper is organized as follows. Section 2

reviews related work. Section 3 proposes an analysis frame-
work to quantify energy savings. Section 4 develops algo-
rithms for occupancy estimation. Section 5 describes the
system architecture of EnergyTrack and presents our testbed
implementation. Section 6 evaluates the performance of the
proposed occupancy estimation algorithm and analyzes em-
pirical results from EnergyTrack. Section 7 concludes.

2. RELATEDWORK
In recent years, researchers in the wireless sensor network

(WSN) community have developed large-scale energy mon-
itoring systems [8, 7, 3] and analysis models for building
energy consumption [5]. Our work differs from these studies
in that we provide a general framework that jointly evalu-
ates occupant utility and energy consumption, as opposed to
evaluating them in isolation. To the best of our knowledge,
we present a first analytical framework and system archi-
tecture that systematically quantifies energy savings using
real-time sensor data.
In [8], the authors develop a wireless sensor platform,

ACme, for large-scale energy monitoring and actuation of
plug loads in buildings. In [7, 3], ACme is deployed for
the empirical study of a large and long-lived appliance en-
ergy monitoring system. In [5], the authors propose a new
method to automatically detect abnormal energy usages from
power meter measurements using Empirical Mode Decom-
position (EMD). They identify the anomalous behavior of
devices in an unsupervised manner by exploring the correla-
tions between devices at different time scales. They do not
consider occupancy in their analysis. We use conditional
probabilities to flag out such anomalies, while considering
the dependency between device energy consumption and oc-
cupancy.
There are several industry standards related to analysis

frameworks for building energy savings. The International
Performance Measurement and Verification protocol [4], which
we refer to as the M&V protocol, provides a general guideline
to determine the baseline energy consumption and savings
potential due to energy conservation measures in buildings.
The predicted percentage dissatisfied (PPD) metric [6] is an
ISO standard that provides an analytical model to quantify
occupant thermal comfort from parameters, such as temper-
ature, humidity, clothing and metabolic rate. We incorpo-
rate these guidelines proposed into our analytical framework
and estimate key parameters, such as occupancy and ther-
mal comfort, using real-time sensor data.
The occupancy level in buildings is one of the most im-

portant parameters for accurately quantifying energy sav-
ings. It has been shown that real-time occupancy informa-
tion can greatly reduce energy consumption [1]. Therefore,

occupancy estimation using WSN has been an active area
of research [11, 12]. In [11], the authors show that PIR
sensors alone cannot support reliable occupancy estimation.
This led them to employ cameras deployed in public hall-
ways along with PIR sensors [12]. Our approach is similar
to theirs in that we also use complementary sensors (i.e CO2
sensors) with PIR sensors. However, our approach does not
require training or a calibration process, as our algorithm
(cf. Algorithm 1) simultaneously estimates both model pa-
rameters and occupancy given sensor measurements. Hence,
our solution is potentially less sensitive to the locations of
sensors in the building, which can reduce WSN deployment
efforts.

3. ENERGY USAGE ANALYSIS

3.1 Taxonomy and Assumptions
Generally, energy consumption is governed by complex

interactions between occupants, (electrical) end-loads and
zones. A zone is defined as a logical space that supports a
certain type of occupant activity. For example, a pantry, an
office cubicle, or an aisle can be considered to be an indi-
vidual zone. Let us consider a well-defined closed space of
a building (e.g. office space), and refer to it as a root zone.
This root zone has a fixed number of sub-zones and end-
loads. It is also associated with a maximum occupancy that
denotes the maximum number of people who are simultane-
ously present in the zone. We only consider energy that is
consumed within this root zone and ignore any consumption
that originates from outside of it.

We assume that all end-loads provide a certain type of
benefit for building occupants, such as entertainment, work
productivity, comfort, etc. We refer to these benefits collec-
tively as a service. We use a metric, utility, to quantify how
effectively the end-load’s energy is spent to provide such ser-
vice. This utility metric is essential to analyzing operational
energy efficiency of various loads with respect to occupants.
For example, the energy wasted by air conditioners is largely
dependent on the occupants’ subjective comfort level (e.g.
too cold or too warm). This is because the cost of maintain-
ing this comfort needs to be simultaneously considered.

End-loads may service a single zone or multiple zones
when they operate. We define the utility coverage of an
end-load as the spacial range within which an occupant can
enjoy its service. Some end-loads, such as refrigerators and
computer servers, can provide service regardless of occupant
locations and thus their utility coverage extends to all zones,
whether inside or outside of the root zone. Other end-loads,
such as desktop computers, require occupants to be in their
proximity and thus their utility coverage typically extends
to only the sub-zone to which they belong.

3.2 Model Formulation
We now formalize the building energy usage model as

a function of occupants, end-loads, and sub-zones. Let G
denote the two dimensional space of a root zone. We de-
note the number of end-loads, sub-zones, and the maximum
number of occupants by N , L, and M respectively. Let
V = (v0, v1 · · · vL) be a mutually exclusive set of zones where
vi>0 ∈ G are sub-zones and v0 /∈ G for any locations outside
the root zone. Let U = (u1, · · ·uN ) be the set of end-load
locations where ui ∈ v{1≤j≤L}.



3.2.1 Mean utility

We assume that each occupant stays in a zone for a ran-
dom amount of time, then makes a random transition to a
different zone. Let ai(t) be the location of occupant i at time
t where ai(t) ∈ V. Let IA(x) denote the indicator function
of A where IA(x) = 1 if x ∈ A and IA(x) = 0 otherwise. We
define occupant m’s occupancy of zone vl between time t1
and t2 as follows:

aml(t1, t2) =
1

t2 − t1

∫ t2

t1

Ivl(ai(t)) dt, (1)

where 0 ≤ aml(t1, t2) ≤ 1.
Let qnl(t) ∈ R[0 1] denote the utility at zone l delivered

by end-load n at time t. Let q̃nm(t1, t2) denote the utility
provided by end-load n and delivered to occupant m during
the time (t1, t2), expressed as

q̃nm(t1, t2) =
1

t2 − t1

L∑

l=0

∫

t∈Tml(t1,t2)

qnl(t) dt,

where Tml(t1, t2) is the time period for which occupant m
stays in zone l during the time (t1, t2).
Let q̄n(t1, t2) denote the weighted mean of utility per oc-

cupant that we refer to as mean utility. Then the mean
utility can be defined as:

q̄n(t1, t2) =
M∑

m=1

wnmq̃nm(t1, t2) (2)

where wnm is the weight coefficient for the average such
that wnm ∈ R[0 1] and

∑M

m=1 wnm = 1. It can be easily
verified that 0 ≤ q̄n(t1, t2) ≤ 1. The weight coefficient wnm

is determined by the occupant m’s ownership of end-load n.
If the end-load n is solely owned by occupant m, then

wnm = 1 and wnk = 0 for k 6= m. Similarly, we have
wnm = 1

M
if the end-load n is equally shared by all occu-

pants. In plain terms, the metric q̄n(t1, t2) is the ratio of the
utility delivered to its intended occupants, to the total util-
ity provided by end-load n between times t1 and t2. It can
be easily seen that q̄n(t1, t2) = 0 if there are no occupants
within the utility coverage of end-load n, which implies that
all energy might be wasted during the time. Conversely, it is
a strong indication of more efficient energy use of end-load
n if q̄n(t1, t2) is close to 1.

3.2.2 Analysis of useful energy usage

Let En(t1, t2) denote the energy consumption (in kWh)
of end-load n between times t1 and t2. Let us assume that
an end-load constantly consumes a certain amount of en-
ergy, which is deemed to be mandatory for the functionality
and/or safety of its operation. We refer to this consump-
tion as static consumption. We assume that the rest of the
consumption is controllable and can be further optimized
based on utility and occupancy. We refer to this consump-
tion as dynamic consumption. Let us consider the following
breakdown of consumption, en(t1, t2) = esn(t1, t2)+edn(t1, t2)
where esn and edn denote static and dynamic consumption, re-
spectively. We propose an energy usage analysis model for

an end-load, given its utility and occupancy, as follows:

en(t1, t2) = esn(t1, t2)
︸ ︷︷ ︸

Static Consumption, esn

+ q̄n(t1, t2)e
d
n(t1, t2)

︸ ︷︷ ︸

Useful Consumption, eun

+(1− q̄n(t1, t2))e
d
n(t1, t2)

︸ ︷︷ ︸

Wasted Consumption, ewn

. (3)

The formula in (3) naturally embeds the cause (i.e. occu-
pancy) and the effect (i.e. utility) of energy consumption
into the usage analysis model. Note that the wasted con-
sumption Ew

n , is an aggressive estimate and can be thought
of as the maximum energy savings that can be realized
by employing DSM. The model can be written in matrix
form where all the measurements are grouped into discrete
time intervals over a single time reference, thereby avoid-
ing large overheads in retrieving and processing data. Let
us consider a time interval of ∆T = 15min by default, for
24 hours of a day. We denote the discrete time reference
Tref = {k∆T | k = 0, · · · , 1440

∆T
}. Let us define the following

matrix at a discrete time k: a) [Ot]ml = aml(tk, tk + ∆T );
b) [Qt]nl = qnl(tk, tk +∆T ); and c) [W]nm = wnm. Let q̄k

denote a vector of the mean utilities of n end-loads where
[q̄k]i = q̄i(tk, tk +∆T ) for end-load i. Then it can be easily
verified that a vector of mean utility of N end-loads at time
index k is [q̄k]i = [OkQkW]ii.

Let ek be an N ×1 vector of the energy consumption of n
end-loads where [ek]n = en(tk, tk +∆T ). The energy usage
analysis in (3) can be rewritten in matrix form as follows:

ek = e
s
k + diag(q̄k)e

d
k + (I− diag(q̄k))e

d
k, (4)

where es
k and ed

k are vectors of static and dynamic consump-
tions of N end-loads, respectively.

4. OCCUPANCY ESTIMATION
Let al(t1, t2) and āl(t1, t2) denote the occupancy and the

average occupancy level, respectively, at zone vl by M num-
ber of occupants between time t1 and t2. Their definitions
are shown in (5).

al(t1, t2) =
M∑

m=1

aml(t1, t2); āl(t1, t2) =
1

M
al(t1, t2), (5)

where M is the maximum number of occupants in zone l.
We develop an algorithm to estimate the occupancy in (5)
using CO2 and PIR motion sensors, given lower and upper
bound information of the occupancy al(t1, t2). It can be
easily seen that the initial bound is 0 ≤ aml(t1, t2) ≤ M by
default. Our algorithm computes the occupancy estimates
independently using measurements from each CO2 and PIR
sensor, and then heuristically combines them for the final
estimate. The main advantage of our algorithm in practical
settings is that it can robustly estimate the occupancy given
only the maximum occupancy M .

For discrete times t = 1, · · · , n with a time interval ∆T ,
let xc = (xc

1, · · · , x
c
n) and xp = (xp

1, · · · , x
p
n) denote a vector

of the average of CO2 sensor measurements and the total
number of PIR sensor triggering events, respectively. Simi-
larly, let âc = (âc

1, · · · , â
c
n) and âp = (âp

1, · · · , â
p
n) denote a

vector of the total occupancy estimates from CO2 sensors
and PIR sensors, respectively. Note that we use the nota-
tion at for the total occupancy at time index t in place of a
zone l in al to simplify notations.



We use the autoregressive moving average model (ARMA)
for our estimation function, mapping x∗ 7→ â∗ as follows:

âc
t = αc +

τc∑

i=0

αix
c
t−i, âp

t = βp +

τp∑

i=0

βix
p
t−i (6)

where the model orders of ARMA, τp and τc, depend on the
time interval ∆T . Note that the ARMA model of a CO2
sensor for τc = 1 has been experimentally verified [9].
The model coefficients α and β can be found by linear

regression from training data sets (ag,xp) and (ag,xp), re-
spectively, where ag gives the ground truth measurements of
occupancy a. However, the exact ag is generally not avail-
able or expensive to obtain. Instead, it is more realistic to
assume that only rough lower or upper bounds of ag are
available. Let al and au denote the lower and upper bounds
of ag such that 0 ≤ al ≤ ag ≤ au ≤ M . Our algorithm
iteratively computes optimal estimates of the coefficients α
and β from the data sets (al,au,xc) and (al,au,xp), respec-
tively. Our iterative solution is derived based on the general
algorithmic framework of Expectation Maximization (EM)
for linear regression with incomplete data [10].
We present the detailed solution of an EM-based estimator

in Algorithm 1. Let us consider the observed data of y for
dependable variables and x for explanatory variables, and
the coefficient vector β. We would like to estimate β that
best explains the linear model y = xβ + e, where e is a
model error with the Normal distribution, and

x =






1 x11 · · · x1τ

...
... · · ·

...
1 xn1 · · · xnτ




 , β =






β0

...
βτ




 ,y =






y1
...
yn






Without loss of generality, we assume that the firstm sam-
ples of y are observed, but for the rest of the samples only
their bounds are given such that −∞ ≤ yl

i ≤ yi ≤ yu
i ≤ ∞

for i = m+ 1, · · · , n. Let ym,yl. Let yu denote a vector of
the observed (yi)i=1,··· ,m, the lower bounds (yl

i)i=m+1,··· ,n,
and the upper bounds (yu

i )i=m+1,··· ,n. In general, no closed
form solutions exist for the optimal maximum likelihood es-
timator of β. Instead, a solution can be found by iteratively
updating estimates β̂ and ŷ by the EM algorithm.

Algorithm 1 Estimate β from (x,ym,yl,yu)

1. Initialization: σ̂(0), β(0), µ(0)

2. Expectation step: update y(r)

y
(r)
i = yi for i = 1, · · · ,m

y
(r)
i = E[yl

i
,yu

i
](yi) for i = m+ 1, · · · , n

3. Maximization step: update β(r), µ(r), σ̂2(r)

β(r) = (x′x)−1x′y(r)

µ
(r)
i = β

(r)
i x

σ̂2(r) = 1
n

{
m∑

i=1

(y
(r)
i − µ

(r)
i )2 +

τ∑

i=m+1

V ar[yl
i
,yu

i
](yi)

}

4. Evaluation: convergence test for σ̂(r)

Repeat 2,3,4 until σ̂(r) converges.

The EM algorithm is shown in Algorithm 1. For brevity,
we omit its derivation. In Algorithm 1, we use shorthand
notations for the conditional expectation and variance of
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Figure 1: System Architecture of EnergyTrack

yi: E[yl
i
,yu

i
](yi) = E[yi|y

l
i ≤ yi ≤ yu

i ] and V ar[yl
i
,yu

i
](yi) =

V ar[yi | yl
i ≤ yi ≤ yu

i ]. Given that the random variable
{Yi|y

l
i ≤ Yi ≤ yu

i } follows a truncated Normal distribu-
tion, it can be easily verified that closed form formulas for
E[yl

i
,yu

i
](yi) and V ar[yl

i
,yu

i
](yi) are

E[yl
i
,yu

i
](yi) =µ

(r)
i + σ̂(r) φ(z

l,(r)
i )− φ(z

u,(r)
i )

Φ(z
u,(r)
i )− Φ(z

l,(r)
i )

V ar[yl
i
,yu

i
](yi) =σ̂2(r) + σ̂2(r) z

l,(r)
i φ(z

l,(r)
i )− z

u,(r)
i φ(z

u,(r)
i )

Φ(z
u,(r)
i )− Φ(z

l,(r)
i )

− σ̂2(r)

(

φ(z
l,(r)
i )− φ(z

u,(r)
i )

Φ(z
u,(r)
i )− Φ(z

l,(r)
i )

)2

(7)

where z
l,(r)
i =

yl
i−µ

(r)
i

σ̂(r) and z
u,(r)
i =

yu
i −µ

(r)
i

σ̂(r) , and φ and

Φ(x) denote the probability density function and cumulative
distribution function of the standard normal distribution,
respectively.

The final occupancy estimate at time t is the weighted
average of the two estimates shown below:

ât =
wc

t â
c
t + wp

t â
p
t

wc
t + wp

t

− â0, wc
t =

|âp
t |

M
, wp

t =
|M − âc

t |

M
(8)

where â0 is the occupancy offset constant found by â0 =
min({âi|âi < 0}). The weight coefficient wc

t penalizes the
estimate by CO2 sensors âc

t as the PIR sensor detects low
occupancy, i.e. âp

t → 0. Similarly, we can interpret wp
t as a

penalty coefficient for âp
t given âc

t .

5. SYSTEM DESIGN

5.1 Overview
EnergyTrack is designed with a multi-layered and modu-

lar architecture to provide flexibility and scalability. Figure
1 shows the overall system architecture of EnergyTrack. It
consists of three main layers: sensor data layer (SDL), model
parameter layer (MPL), and energy analytics layer (EAL).
It is supported by the data collection network (DCN) and
a user interface layer (UIL). The DCN gives a network in-
frastructure abstraction to deliver sensor data (e.g., temper-
ature or power measurements) to the SDL. The UIL allows
users to easily modify configuration settings of EnergyTrack
and access the various analytics results. The SDL provides
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Figure 2: Testbed illustration: (a) Sensors types in deployment: A:CO2, B:PIR, C:Plug Meter, D:Temp./Humd./Lux.,
E:Current Transducers at sub-branch, (b) Wireless sensor deployment map, (c) Data collection network.

a long-term repository for raw data collected from the DCN.
The MPL consists of functions to estimate the following key
model parameters: occupancy level, mean utility, and end-
load states. It also performs a time series analysis that finds
temporal correlations of end-load energy consumption with
parameters such as occupancy level. In particular, it finds
the best linear or quadratic fitting function of energy con-
sumption for the estimated occupancy levels.
The EAL uses parameters from the MPL to provide three

key features: a) Energy wastage tracking (EWT); b) Con-
sumption anomaly detection (CAD); and c) Energy usage
map (EUM). The EWT evaluates energy wastage (or equiv-
alently, potential energy savings opportunities) in real-time
using the energy usage analysis model in (4). The CAD
finds abnormal consumptions that do not follow the inferred
usage patterns, i.e., fitted functions of consumption, given
occupancy rate provided by the MPL. The EUM hierarchi-
cally maps energy consumption over directed tree graphs of
end-use loads, occupants, and zones.

5.2 EnergyTrack Testbed
EnergyTrack is implemented in an office space in a com-

mercial building, where about 90 occupants regularly work
during the business hours of 8am-6pm on weekdays.

5.2.1 Data Collection Network

The testbed system consists of a wireless sensor network
of 80 plug meters, 5 THL sensors, 5 CO2 sensors, 9 PIR sen-
sors, and a panel-level power monitoring system, as shown in
Figure. 2(a). The wireless sensor network consists of motes
running TinyOS with a TI MSP430F1611 MCU (8MHz clock
rate and 10KB RAM) and a Chipcon CC2420 Zigbee radio.
The power panel monitoring system samples and reports
power consumption of electrical branches at the main switch
board (MSB) of our office testbed, as well as its 42 sub-
branches, every 1.8 seconds. The sub-branches are grouped
into plug, lighting, and server use. They allow us to analyze
consumption by load-types. The plug meters are mostly
installed at individual desktop computers reporting power
consumption every second by default. The locations of the
THL, CO2, and PIR sensors are carefully chosen for the
deployment according to their sensing requirements. De-
ployment details of the wireless sensor network are shown in
Figures 2(b) and (c).

5.2.2 Sensor Data Layer

The SDL is implemented using MySQL 5.1.49. From all
the sensors combined, we collect and store approximately
6.7 million data points every day. Different database de-
signs were tested and ultimately designs favoring fast read
times were chosen over those that increase modularity. We
maintain a DB table for each sensor node to reduce the
SQL query execution time. We also take averages of sensor
data every 15 minutes and store these in separate tables.
This caching method greatly reduces the execution time for
search queries with acceptable storage redundancy.

In our current testbed, the consumption data of the HVAC
system is not available as the entire building management
system (BMS) is confidentially managed by a private build-
ing management company. Instead, we use data generated
from EnergyPlus simulations, a method that is described in
great detail in [2]. To drive realistic simulations we create
models in EnergyPlus using detailed building specifications
such as thermal envelope parameters, floor plan measure-
ments, and air handler unit (AHU) specifications obtained
from the building management company. Our simulations
reveal that the cooling capacity of our HVAC system is over-
sized by about three times of what it needs to be. This is
common in commercial buildings, because these systems are
designed to handle worst case cooling loads. As a conse-
quence of this oversizing, the HVAC system operates in-
efficiently and draws a large, constant power regardless of
occupancy and weather variations.

5.2.3 Model Parameter and Energy Analytics Layer

Our system considers only a root zone (i.e., no sub-zones)
since a single AHU serves our office. The hourly occupancy
level is estimated for the root zone. Fig. 3(a) shows our en-
ergy analytics interface that displays hourly mean utility for
the HVAC and lighting systems of the testbed, using ther-
mal and visual comfort metrics. Note that the mean utility
is set to 1 for all plug loads. For thermal comfort, we adopt
the predicted percentage of dissatisfied (PPD) standard [6].
The PPD metric is a function that predicts the percentage of
occupants who are dissatisfied with their thermal comfort,
given various environment and human conditions such as air
temperature, humidity, metabolic rate, and clothing insula-
tion. Our system updates the PPD value hourly, based on
temperature and humidity data from the SDL. Other vari-



(a) (b) (c)

Figure 3: EnergyTrack Implementation: (a) Visualization of real-time parameter estimates: thermal comfort, visual comfort,
and occupancy level, (b) Energy wastage tracking for HVAC with thermal and visual comfort parameters that can be adjusted.
The wasted energy is the difference between the actual and the useful consumption, (c) Consumption anomaly detection for
plug loads with anomalous consumptions marked in blue and yellow.
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Figure 4: Snapshot of energy usage map by end-loads from the EnergyTrack testbed at 10am, 07/18/2013.

ables can be set by users via the UI shown in Figure. 3(a).
The visual comfort is evaluated using a logistic function of
illuminance (lux) measurements, where its mean utility be-
comes 1 (or 0) beyond (or below) a certain threshold set by
the user. Fig. 3(b) illustrates the HVAC system wastage in
our office. This is calculated using occupancy levels as well
as thermal comfort parameters on the left panel. Similarly,
visual comfort is used to assess lighting load wastage. Fig-
ure 3 illustrates the consumption of plug loads, with certain
hours exhibiting anomalous consumption. These anomalies
could raise alerts, or simply be marked for further investiga-
tion. Figure 4 shows a snapshot of the EUM of our testbed.
In the figure, the length of the red bar on a leaf node indi-
cates its consumption.

6. EVALUATION

6.1 Occupancy Estimation
We evaluate our occupancy estimation algorithm presented

in Section 4. In our evaluation, we estimate the occupancy
level in our current EnergyTrack testbed every 15 minutes
on a weekday (Thursday). This gives us a total of 96 dis-
crete samples for corresponding sensor measurements. The
results are compared to ground truth data, which was ob-
tained by manually counting occupants in the testbed. The
locations of the CO2 sensors and PIR sensors used for the
estimation can be found in Fig. 2(a). For ∆T = 15 minutes,
we set τc = τp = 2 for the orders of the ARMA model in
(6). We set the lower and upper bounds of occupancy to 0
and 90, respectively. The upper bound represents the total

Data set Max.Bound Training data
Sensors PIR CO2 PIR+CO2 PIR+CO2

Occupancy
6.81 % 9.47 % 4.06% 3.80%

Level Error

Table 1: Occupancy level error comparison.

number of staff members in our current living lab testbed.
Given the bound information, we run our estimation al-

gorithm for each of the following sensor combinations: PIR
sensors alone (cf. âp

t in (6)), CO2 sensors alone (cf. âc
t in

(6)), and both CO2 and PIR sensors together (cf. ât in (8)).
We also use the ground truth data as a training data set to
obtain the best estimation performance given the data set.
As a performance metric, we use the absolute difference in
occupancy level (%) between the estimate and the ground
truth. The occupancy level error at time t is formally defined

by 100× | ât

M
−

a
g
t

M
|.

Figure 5 shows the CO2 and PIR measurements in the top
plot, which correspond to xc

t and xp
t in (6), and the estimates

by the algorithm in the bottom plot, for the different com-
binations of CO2 and PIR measurements with or without
training data. Figure 6 shows the occupancy level errors
for each of the 96 sample points during a day. It shows
that the estimation experiences a large offset error during
low-occupancy periods for CO2 sensors alone. There is also
high instability during high-occupancy periods for PIR sen-
sors alone. Hence, the two types of sensors during low and
high-occupancy periods have complementary performance
with each other.

As predicted, estimates by our algorithm using PIR +
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Figure 5: Sensor measurements and HVAC ON/OFF states
(top), and estimated total occupancy for various settings vs.
the ground truth (bottom).
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Figure 6: Occupancy level errors during a day for various
combinations of CO2 sensors and PIR measurements with
and without training data.

CO2 with Max.Bound closely follow the ground truth for
most of the day, except between 8-10 pm, as show in Figure
5. The performance degradation during these hours occurs
because of a sudden drop in the ventilation rate as the HVAC
system turns off at 8pm. The occupancy levels for different
settings are compared in Table 1. The table shows that our
algorithm PIR+CO2 with Max.Bound can achieve an error
of 4.06%, which is close to the best estimation performance
of 3.80%.

6.2 Analysis
We evaluate our EnergyTrack EWT method against a

baseline heuristic method. The baseline method corresponds
to reducing the estimated wastage without the use of a con-
trol system. For lights, the wasted energy is given by the
amount of energy consumed when the occupancy is zero.
This can be avoided if the last person to leave the office
were to switch off the lights. For HVAC, wastage is given by
the amount of energy that can be saved if the temperature
setpoint were set so that at least 90% of the persons in the

Load Heuristic Method EnergyTrack

Lighting 458kWh (15%) 2009kWh (66%)
PC 442kWh (14%) 1391kWh (44%)

HVAC 400kWh (32%) 770kWh (62%)

Table 2: Energy Wastage Estimates for One Month

office are satisfied per the PPD metric. This saving can be
achieved by simply increasing the temperature setpoint to
the optimal value, which is 26.7◦C for our office. This saving
is calculated by running multiple EnergyPlus simulations to
determine the AHU load for various indoor temperature set-
points, as illustrated in Figure 7. For computers, we define
wastage as the amount of energy consumed when X̄ > X̄t

and σ2 > σ2
t, where X̄ and σ2 are the sample mean and

variance, respectively, for half-hour intervals. Setting the
thresholds in our office to X̄t = 10W and σ2

t = 1W 2 cap-
tures the periods when the computers are on but not per-
forming any processing tasks. In these situations, they ought
to be switched to standby mode.
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Figure 7: Plotting AHU power consumption as estimated
using EnergyPlus, and thermal comfort as expressed as per-
centage of persons satisfied with the temperature setpoint.
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Figure 8: Energy use analysis of HVAC for different tem-
perature setpoints over operation periods.

In addition to the comfort-cost trade-off depicted in Fig-
ure 7, EnergyTrack incorporates the ground truth occupancy
level in Figure 5 and applies Equation (4) to analyze the



useful and wasted HVAC consumption for different temper-
ature setpoints. These consumptions are analyzed for each
4-hour-period from 6:00hrs to 22:00hrs, as shown in Figure
8. During the high-occupancy period (10-18:00 hrs), energy
is most efficiently used at 24◦C where the useful consump-
tion is greater than the wasted consumption. However dur-
ing the low-occupancy period (6-10:00 hrs and 18-22:00 hrs),
no satisfactory temperature setpoint exists since the useful
consumption is less than the wastage for all settings. This
result is consistent with our intuition, since HVAC systems
will be most efficient when the maximum number of occu-
pants experience optimal thermal comfort. For plug loads
alone, es

k in Equation (4) is non-zero, and it is estimated by
calculating the base load beyond which consumption cannot
be reduced.
The two methods are compared using the same set of data

for a period of one month. The office staff were not in-
formed about this energy wastage investigation, and thus
their consumption behaviors would not have changed dur-
ing this period. The wastage estimates of EnergyTrack are
significantly greater than those of the heuristic method as
shown in Table 2. The key reason for this difference is that
EnergyTrack accounts for dynamic changes in occupancy
and comfort whereas the heuristic method does not. The
table shows the wasted energy for a period of one month,
in absolute terms and as a percentage of the total energy
consumed by each appliance.
For the one-month period, the heuristic method estimates

the total energy wasted to be 1300kWh while EnergyTrack

estimates this to be 4170kWh. At an electricity tariff of
20c/kWh and no demand rates, the advantage realized by
the EnergyTrack method over the heuristic method is 574
dollars per month. This effectively quantifies how much a
facility manager would stand to gain by installing an auto-
mated control system that can realize the full savings po-
tential estimated by EnergyTrack, as opposed to relying on
manual control based on heuristic methods.

7. CONCLUSION AND FUTUREWORK
In this paper, we present EnegyTrack, a system that ana-

lyzes and interprets energy consumption patterns in build-
ings. We propose an analysis model for energy usage that
jointly considers occupancy levels and the utility provided
by end-loads. Our occupancy estimation algorithm uses
PIR and CO2 sensors, and has a lightweight training re-
quirement. Finally, we demonstrate the application of En-
ergyTrack for energy use analysis in a real testbed system.
The database and analysis tools of our current EnergyTrack
testbed are freely available to the scientific community through
the Internet1. In future work, we intend to deploy Energy-

Track in other testbeds to gain insights into consumption
patterns in different settings.
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