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ABSTRACT
Streaming of an arbitrary region of interest (RoI) from a
high resolution video is essential to supporting zooming and
panning within a video stream. This paper explores two
methods for RoI-based streaming, referring to them as tiled
streaming and monolithic streaming. Tiled streaming parti-
tions video frames into grid of tiles and encodes each tile as
an independently decodable stream. Monolithic streaming
applies to video encoded using off-the-shelf encoder, and re-
lies on a pre-computed dependency information to send the
necessary bits for the RoI. We evaluated these two methods
in terms of bandwidth efficiency, storage requirement, and
computational costs under different video encoding parame-
ters. Experimental results show that bandwidth efficiency of
tiled streams for RoI-based streaming reduces when tile size
increases, despite improvement in compression efficiency. In
the case of monolithic streams, use of a larger motion vec-
tor range coupled with careful run-time optimization can
still improve the bandwidth efficiency, despite an increase in
motion vector dependency.
Categories and Subject Descriptors: H.5.1 [Multime-
dia Information Systems]: Video;H.4.3 [Communications Ap-
plication]
General Terms: Design, Performance.
Keywords: Zoom and Pan, Video Streaming, Region-of-
Interest, Video Cropping.

1. INTRODUCTION
As video capturing devices become increasingly capable of

capture at higher resolutions, we see an opposing trend in
reduction of display sizes, mainly driven by the proliferation
of mobile devices including portable media players, mobile
phones, and PDAs. Even as screen resolution on mobile
devices improves, due to the physical limitation of the size
of the device and human inability in differentiating details
beyond a certain pixel density, display resolution on mobile
devices will not be able to catch up with the resolution of
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capture devices. In other words, more bits are being cap-
tured than being displayed. This observation has driven us
to rethink the possible user interactions with video. In par-
ticular, we believe that zooming into and panning around a
video become important operations.

As opposed to currently most adopted trick play oper-
ations – fast-forward, rewind, fast/slow-motion playback –
which operate in the temporal dimension, zooming and pan-
ning operate in the spatial dimension. Zooming allows users
to view a cropped region of interest (RoI) at a high reso-
lution, in effect, magnifying the RoI, while panning allows
user to change the coordinates of the magnified RoI while
keeping the size of the RoI fixed.

The zoom/pan operation is useful in many video appli-
cations, including sports, surveillance, and education. Con-
sider an example in educational video. When watching a
video lecture on a hand-held device with a small display,
one can see the lecturer and the whiteboard but may not be
able to read what is written on the board. One could zoom
into the region around the written matter for a clearer view
(Figure 1) and pan to view another area on the board as
the lecture proceeds. Another example is viewing of surveil-
lance video. One might want to zoom into an area in a scene
to examine the detail more clearly (e.g., faces of suspects,
license plate numbers), or pan to track a suspicious person
around.

Supporting zooming and panning during local playback is
relatively easy to achieve. The decoder only needs to decode
bits necessary to display the RoI and scale down each frame
to fit the display size. Our research is motivated by a more
challenging problem of supporting zooming and panning in
streaming video, where the high definition video is stored on
a server and is streamed to one or more client(s) for view-
ing. To reduce the bandwidth consumed, the high resolution
video is usually not sent directly to the clients, instead, the
video is scaled down to a size appropriate for display at the
client before streaming. The lack of original high resolution
video at the client leads to a very different solution for zoom-
ing/panning than local playback. The client would need to
send the request for a RoI to the server. The server would
then send the RoI, scale down to the appropriate resolution,
for display at client.

A naive solution would be for the server to transcode the
requested RoI as a new video and send it as a stream as
usual. Such a solution, however, incurs computation cost,
and is not scalable to larger number of users, where different
users can freely zoom and pan to different RoIs. Another
naive and more restrictive solution is to restrict the possi-
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Figure 1: Example of Zooming. Users can zoom to view different level of details within the video. The images on top shows
the video player, while the image below shows a thumbnail of the video with the zoomed-in RoI highlighted in white.

bilities of RoIs that the user can request and store a copy
of video for each possible RoI on the server. This solution
incurs a one-time computational cost at the expense of more
storage and restrictive user interaction.

Our research aims to investigate into new approaches to
encode, store, and stream a pre-recorded video that allow
users to freely zoom and pan into any RoI in a video stream,
and is scalable to large number of users by being efficient
in terms of bandwidth, computation cost, and storage. To
support zoom and pan, two operations are needed: scaling
and cropping. As a first step towards this goal, we investi-
gate into how to support dynamic cropping of RoI on video
streams. Solutions to scaling are well known and can be
supported by storing different versions of video at different
zoom levels (i.e., resolution)1.

This paper explores two methods to encode, store, and
stream video that support dynamic selection of RoI for video
cropping. The first method, monolithic streaming, uses videos
encoded with off-the-shelf video encoder. The server pre-
computes a dependency graph of macroblocks. When users
request for an RoI, macroblocks falling within the RoI are
streamed along with all dependent macroblocks that are out-
side the RoI. The second method, tiled streaming, divides
each frame into a grid of tiles, and encodes each grid as a
video. Equivalently, one can modify the video encoder to
restrict the motion vector and video slices to fall within a
tile. When users request for a RoI, tiles that overlap with the
RoI are sent. We based our work on MPEG-4 simple profile,
but the techniques and principles apply for any DCT-based
video codec.

Experimental evaluation shows that motion vector length
and slice length determine the effectiveness of the two meth-
ods. For the same RoI configuration, monolithic streaming
achieves lower data rates than tiled streaming when slice
size is small and longer motion vectors are used. However,
the performance of monolithic streams can deteriorate sig-
nificantly for larger slice size. We also found that parame-
ters that lead to better compression (longer motion vector,
bigger tile sizes) do not necessarily translate to bandwidth
savings when only an RoI is streamed.

The rest of the paper is organized as follows: Section 2
highlights some of the work required by, or related to, RoI-

1The number of zoom levels is usually much less than the
number of possible RoIs

based streaming. Section 3 reports on a pilot study con-
ducted to verify the need and usefulness of supporting zoom
and pan, with arbitrary RoI cropping in a video stream.
Section 4 describes the tiled streaming method, and is fol-
lowed by a description of the monolithic streaming method
in Section 5. Section 6 discusses an experimental evaluation
of the two methods, followed by a concluding discussion in
Section 7.

2. RELATED WORK
Selecting a region of interest (RoI) to zoom into is a com-

mon human activity while dealing with images and maps.
In the context of video, several projects/tools have proposed
using zooming and scrolling to focus on a RoI within a high-
resolution video. Techniques for automatically determining
a RoI and adapting standard-based video encoding tech-
niques for RoI based applications have been explored.

The Diver project [12] and virtual camera control [14] aim
at providing a digital video re-purposing system that allows
users to interact with pre-recorded video. One of the fea-
tures is the ability to select a region of interest so as to
spatially crop the stored video. Video re-targeting [9], ad-
dressed the problem of adapting video frames to a target
display by way of spatial cropping and scaling. A candidate
set of cropping windows is analyzed and an optimal crop-
ping window that minimizes a distortion function is chosen
to crop the video before it is scaled. The cropping window
can change with motion in the video and is therefore adap-
tive.

In the context of RoI detection and tracking for stored
video playback, there have been attempts to model the RoI
[5] based on amount of motion. Such models could help
determine the RoI, without human interaction with a dis-
play device. Multi-scale cropping [4] dealt with automated
tracking of multiple RoIs defined by motion change. The
aim was to minimize the number of RoI trajectories within
the video while covering all the RoIs. Automatic detec-
tion and tracking of RoI using object detection in wide an-
gled panoramic video [15] is another technique to realize
automated virtual camera control. A single object (RoI) is
detected and tracked across multiple synchronized cameras
covering a class room lecture. Mavlankar et al. [11], address
the issue of tracking an object within a RoI and its applica-
tion in predicting a new RoI during explicit user interaction.
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The previous work described above has established use-
ful applications of supporting zooming and panning using
the notion of a region-of-interest. Their research focuses on
user interaction or automating the selection of RoI based on
content analysis.

Current video standards do not support arbitrary, inter-
active cropping, and scaling required for RoI-based stream-
ing. Recent H.264/AVC scalable extension [8] supports spa-
tially scalable coding with arbitrary cropping in its Scal-
able High Profile [3]. The coded video, however, supports
pre-determined spatial resolutions and cropping only, as it
is designed for applications such as “pan and scan” when
converting wide-screen DVD for 4:3 display and does not
support interactions.

A recent work on fine-grained multi-resolution video [7]
explored how to support a wide range of spatial resolutions.
A follow-up work [6] investigated into supporting RoI crop-
ping with constrained compression of MPEG-2 video. The
latter method is the same as tiled streams explored in this
paper.

Techniques for cropping by limiting temporal dependency
[13] within a compressed video was addressed by Rehan and
Agathoklis. They proposed a technique where by the first
frame in the cropped set is encoded into an I-frame, with
all predicted frames re-encoded with the new I-frame as
the reference. As re-encoding works only when the RoI is
known apriori, this method lacks flexibility. Exploiting flex-
ible macroblock ordering (FMO) for region of interest crop-
ping [2] is another approach suited for H.264 SVC. The RoI
is encoded as a slice group and dependent/overlapping parts
are encoded as another slice group. Although FMO disables
inter-slice group decoding dependency within a picture, the
existing temporal dependency still persists. The proposed
approach is static in the number of RoIs which is fixed at
the time of encoding the video. Such an approach has an
inherent drawback of not allowing users to choose the RoI or
change the RoI during playback. A similar approach, which
takes advantage of FMO [1], solves the issue of bandwidth
awareness. Network feedback is used to change the encod-
ing parameters for a RoI, automatically determined based on
motion characteristics. The RoI is encoded as a slice group
using a lower quantization scale when compared to regions
outside the RoI. Mavlankar et al [10], analyze the optimal
slice size for RoI-based streaming with virtual PAN/ZOOM
functionality. They make use of the fact that H.264 AVC
allows creation of slices of arbitrary configurations due to
FMO. They theoretically estimate and empirically validate
the optimal slice sizes for HD videos of different resolutions.

Few attempts have been made to address interactive RoI
based streaming of encoded video. We address the issue of
packetization of slices, influence of motion vector, and meth-
ods to encode/pre-process compressed MPEG4 video so as
to achieve streaming for user-specified RoI. In the following
sections, we describe the tiled stream method and the mono-
lithic stream method. The former is a new way of encoding a
raw video while the latter uses a pre-processing stage before
streaming an already encoded video.

3. PRELIMINARY USER STUDY
To study the usefulness of zooming and panning a video,

we conducted a preliminary user study. We recorded High
Definition (1920x1080) videos of two class room lectures at-
tended by 81 students. The camera was mounted statically

with a fixed view at the center of the class so as to have
a full view of the white-board. Movement of the instructor
was not explicitly tracked.

One week before the mid-term test of the class, the recorded
videos were made available on a website. The web page only
displays a video at a size of 320x180. At the default view,
the user sees a scaled down version of the whole video (with-
out cropping). We provide a user interface that allows users
to perform zoom and pan operations on the videos through
both keyboard and mouse. The interface supports six dif-
ferent levels of zooming (from 0 to 5). Level 0 is the default
view and the level 5 is the most detailed one (highest zoom)
equivalent to an RoI of 320x180 in the original HD video.
Over a period of one week, students’ interaction with these
videos was logged. Figure 1 shows the video used in this
user study.
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Figure 2: User Interaction with Zooming

Figure 2 depicts our observations on the most popular
video viewed by 58 users. The figure shows the percentage
of video frames viewed by the 58 users at different zoom
levels. We note that the zoom operation was used for about
67% of the time and the maximum level of zooming (level
5), i.e, the smaller RoI size with maximum detail, seems
to be preferred. This is understandable, to see the white-
board, one needs to zoom. But it is not necessary to stay
at this maximum detail level once the written matter has
been viewed. Some of the students tend to listen to the
audio with occasional zooming, perhaps because they have
taken notes during the lecture and only refer to the board
when necessary. Such traits could be the cause for zoom
level staying at level 0 for 33% of the time. It is possible for
zooming to take place only when something on the board
called for attention.

Figure 3 shows the areas (RoI) viewed by different users.
Each pixel location was tracked and assigned a score equal
to the number of frames in which it appeared within a par-
ticular RoI. The set of scores was normalized and mapped
to the range of 0 to 255 to create a grey-scale range. Pixel
locations were assigned this normalized score and plotted as
an image. The darker areas represent relatively least viewed
regions and the lighter ones represent the most viewed re-
gions in the video. It can be observed that the RoI is wide
spread, indicating that it is necessary to have a system that
can adapt to dynamic changes in the position of the RoI.
Nevertheless, we also observe that certain areas are more
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Figure 3: Heat Map of RoI Requested by Users

preferred regions of interest (bright areas along the cen-
ter). Manual inspection showed that these regions cover a
long white-board containing written matter and also regions
where the instructor is seen moving about. Based on these
observations, one can conclude that the RoI is dependent on
video content and also on user preferences.

4. TILED STREAMS
The first method we explore in this paper is inspired by

how Web-based map services (e.g., Google Map) support
zooming and panning within a map. A commonly used tech-
nique for displaying on-line maps is to divide a large map
into grids of smaller images. Images that overlap with the
RoI of the user are sent to the browser for display. We em-
ploy a similar technique for zooming and panning within a
high resolution video.

We call this first method tiled streaming. Video frames are
broken into a grid of tiles in the pixel domain (Figure 4). For
convenience, we use tiles that are aligned with macroblock
boundary. One can view the video as a three dimensional
matrix of tiles. Tiles in the same x-y position in the matrix
are temporally grouped and encoded independently using a
standard encoder to create a tiled stream. These streams are
indexed by the spatial region they cover. For a given RoI,
a minimal set of tiled streams covering the RoI is streamed
by looking up the index. New tiles may be included into the
stream or tiles may be dropped when the RoI changes. This
technique is similar to that proposed by Feng et al. [6].

As streaming tiles is not a conventional approach to video
streaming, a modified video player is needed to playback
tiled streams. The server sends a tile header (similar to file
header) for each tile so that the corresponding tile could be
decoded when streamed. The video player needs to buffer
the tiled streams and synchronize between them during play-
back.

The complication of buffering and synchronizing between
multiple streams may be avoided by encoding the tiles into
a single video stream, as proposed by Feng et al. [6]. By
modifying the video encoder such that motion vectors are
confined to a tile area and entropy coded bit strings are
also localized to a tile, we can ensure that each tile is still
independently decodable while avoiding the complications
of synchronization.

The main advantage of tiled streams is its simplicity at
the server. A server, upon receiving the RoI request from
a client, can easily determine the set of tiles that overlaps
with the requested RoI before transmission. This solution is

also admissible to a publish-subscribe paradigm. The server
can multicast each tile to one channel, while a client that
wishes to view a particular RoI only needs to subscribe to
the channel serving tiles that overlap with its RoI.

Tiled streaming, however, has several potential drawbacks.
First, either a customized video player is needed to combine
the tiled streams, or a customized video encoder is needed
to generate a single stream where each tile is independently
decodable. Second, since there is a constraint on motion
vector length, the compression efficiency is reduced, lead-
ing to higher storage requirement on the server and higher
bandwidth for streaming the same RoI. Finally, there will
likely be wastage of bandwidth as not all bits transmitted
are necessary for decoding and display of the RoI. Using
tiled streaming, the whole tile needs to be streamed even
when there is a small overlap with the RoI. Since RoI does
not necessarily align with the tiles, redundant regions out-
side of RoI will be transmitted as well. Given a fixed tile
area (AT ), tile width (wT ), tile height (hT ), RoI area (AR),
RoI width (wR) and RoI height (hR), it can be shown that
in the best case the region selected is

l
wR
wT

m l
hR
hT

m
AT
AR

times
the actual RoI. If the RoI width and height are integral
multiples of the tile width and height, then tiled streaming
would result in transmission of a region equal to the dimen-
sion of the RoI. In the worst case, the region selected would
be

“l
wR
wT

m
+ 1

” “l
hR
hT

m
+ 1

”
AT
AR

times the size of the actual
RoI.

There is a trade-off between wastage and storage as tile
size changes. In the extreme case, each macroblock is a tile,
leading to lowest compression efficiency but fewest redun-
dant regions. As tile size increases, compression efficiency
increases, but more redundant regions will be streamed. We
evaluate the effect of using different tile sizes in Section 6 of
this paper.

5. MONOLITHIC STREAM
Supporting RoI decoding using tiled streams can lead to

transmission of redundant bits to clients – bits that do not
contribute to decoding of pixels within RoI at all. To over-
come this issue, we explore a second method in this pa-
per, called monolithic stream, that transmits only bits that
are required for decoding of RoI. This method uses a video
stream encoded with a standard encoder. The server, how-
ever, needs to first analyze the dependencies among mac-
roblocks (Figure 5) within the video and construct a data
structure that allows the following query: given the current
RoI and a macroblock m, is m needed by the client to de-
code a macroblock that falls within the RoI? Clearly, if m
falls within the RoI the query returns yes. Otherwise, the
query will return yes if and only if there exists a macroblock
m′ that falls within the RoI and depends either directly or
indirectly on m. In other words, the bits in m are needed
to parse and decode m′ properly. This analysis of video is
done off-line and is a one-time operation. During transmis-
sion, the server parses through each macroblock m and puts
m into a network packet for transmission if the above query
is true. As a result, the server only transmits necessary bits
to the clients.

The client would need a robust, but otherwise standard,
video decoder and player to display the RoI. Since not all
bits from the original video are sent, regions outside of the
RoI are either not fully decoded, or decoded but with in-
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Figure 4: Tiled Streams

Figure 5: Monolithic Stream

correct pixel values. As we only display the RoI, the error
values do not affect the video playback.

Note that bits outside of the RoI are likely to be trans-
mitted to the client, but unlike tiled streams, these bits do
contribute to the decoding of the RoI due to dependencies.
Nevertheless, the bits outside of RoI still constitute a band-
width overhead and it is desirable to reduce these bits as
much as possible by reducing the dependencies among the
macroblocks. The bandwidth overhead is affected by var-
ious encoding parameters. Encoding the video with more
I-frames, restricting the length of motion vector, and re-
ducing the size of the slices should help reduce the amount
of dependency. On the other hand, reducing the amount
of dependencies decreases compression efficiency leading to
increase in storage size and more bits per macroblock.

5.1 Dependency
We now elaborate on how we determine if a macroblock

m′ depends on another macroblock m. The dependency
could be due to the following reasons in MPEG-4. First,
m′ is an inter-coded macroblock that refers to some pixels
that fall in m. We call this the motion vector dependency.
Figure 6 illustrates the motion vector dependency for three
frames. A macroblock in Frame 3 needs to be decoded and
has a motion vector (arrow shown in the figure) that points

to a particular position in Frame 2, its reference frame. As
the referenced position is not on a macroblock boundary,
four macroblocks, labeled 5, 6, 9, and 10 are required in
order to decode the macroblock in Frame 3. Each of these
macroblocks might refer to a set of macroblocks in Frame
1. The dependency propagates through differentially coded
frames and the number of dependent macroblocks increases
exponentially in the worst case. We will show how this de-
pendency can be optimized in a later section. Motion vector
dependency can be found by tracing the motion vector recur-
sively while making a pass through the video. If the client
needs to decode a macroblock m′ that depends on m due
to motion vector dependency, then the server needs to send
m, along with all macroblocks that m depends on. One can
view the dependency relationship among the macroblocks as
a directed acyclic graph. An example of the graph is shown
on the right of Figure 6.

Second, since macroblock boundaries are not byte-aligned,
macroblock m that comes before the bit-stream needs to be
parsed before the video decoder can get to m′ due to vari-
able length coding (VLC). We call this the VLC dependency.
Note that macroblocks that are sent due to VLC depen-
dency only, need not be fully decoded. They are sent to
allow parsing and maintaining the syntax of the bit-stream.
If the client needs to decode a macroblock m′ that depends
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Figure 6: Motion Vector-based Macroblock Dependency

on m due to VLC dependency, then the server only needs to
send m. Macroblocks that m depends on (through motion
vector dependency) need not be sent.

Other dependency exists. For instance, due to prediction
of DCT coefficient – the AC/DC values of m′ could be pre-
dicted from m. Other video coding formats could introduce
additional dependencies, but the principle of a monolithic
RoI stream remains unchanged.

5.2 Dependency List
To allow the server to quickly determine if a macroblock

needs to be sent for a given RoI, we maintain the follow-
ing data structure called dependency list. For each mac-
roblock m, the server pre-computes a set D(m) containing
the positions of all macroblocks that depend either directly
or indirectly on m. In other words, D(m) = {(x, y)|there ex-
ists a macroblock m′ at position (x, y) that depends on m}.
D(m) forms an irregular shape region that m contributes to
in some frame. For each macroblock m, the server checks if
D(m) overlaps with the RoI. If so, then the server transmits
m. The set D(m) is maintained as a sorted list of positions.
To determine if D(m) overlaps with the RoI, the positions
of the list for m are scanned to determine if any of them fall
into the RoI. If there is at least one match, m is transmitted.

Figure 7 shows how a dependency list would look like for
a specific example. Macroblock at position 2 in Frame 3 de-
pends on a region spanning across macroblocks at positions
5 and 6 in Frame 2. Further, macroblocks at 5 and 6 in
Frame 2 depend on a region overlapping macroblock posi-
tions 5, 6 and 7 in Frame 1. A partial dependency list for
Frame 1 is shown at the extreme right in the figure. Each
node in a square box corresponds to a macroblock in Frame
1. Each macroblock points to a list of circular nodes rep-
resenting macroblock positions in other frames that depend
on the macroblock. Hence if the RoI covers position 6, mac-
roblocks at positions 7, 9, 10 and 11 in Frame 1 need to be
transmitted (in addition to the macroblock at position 6).

Computational cost of searching through a list can be re-
duced by maintaining the dependency list as a 2D range
search tree. Use of efficient data structures is out of the
scope of this paper and hence not discussed further. Nev-
ertheless, we observed that our current implementation, on
an average, takes less than 2msec to look-up the dependency
list for all macroblocks in each frame on a 2.8GHz processor
machine.

5.3 Reducing Motion Vector Dependency
The amount of motion vector dependency can be reduced

if additional analysis is done on the macroblocks and its
motion vector when constructing the dependency list. Fig-
ure 8 shows an example of how this can be done. The fig-
ure shows the same set of macroblocks as in Figure 6. On
Frame 1 in Figure 8, however, we highlight the exact pix-
els needed to decode the macroblock in Frame 3 properly.
Only the macroblocks that contain these pixels (shown in
darker color) need be decoded. Not decoding the rest of the
pixels will result in incorrect pixel values in certain regions
of Frame 2, but these errors would not affect the decod-
ing of the macroblock in Frame 3 since the erroneous values
are never referred to. The graph on the right of Figure 8
shows the dependency structure after removing unnecessary
dependencies.

Note that, during run-time, when the RoI is given, we
can apply the same principle and reduce the amount of mo-
tion vector dependency. If the RoI is not aligned with mac-
roblocks, there will be pixels at the bordering macroblocks
that will not be displayed, and hence errors are not visible.

5.4 Reducing VLC Dependency
Most video encoders break the VLC dependency among

macroblocks by introducing resynchronization markers. These
markers signal the beginning of a slice, which is the smallest
independently decodable unit in a video frame (assuming the
reference frame is decoded). Slice has an adverse effect on
the monolithic stream method. Its impact can be better un-
derstood by referring to Figure 9. Different shaded areas are
slices resulting from entropy coded bit strings. The square
segments are macroblocks. Although slice size (in terms of
bytes) is fixed, each slice may contain different number of
macroblocks. Let us say an entropy coded slice consists of
five macroblocks. Further let it be that macroblocks 3-5 are
within the RoI. After the macroblocks in the slice are en-
tropy coded and assigned a variable length coded string, let
bits 100-200 correspond to macroblocks 3-5. Then bits 1-99
have to be transmitted so that the variable length code for
bits 100-200 (macroblocks 3-5) can be decoded. This means
macroblocks 1-2 will be transmitted although they are out-
side the RoI. Hence slice results in an inevitable transmis-
sion overhead. This overhead can be reduced by reducing
the slice size but would result in lower compression via VLC.

It is useful to think of each slice as consisting of three
segments. Suppose a macroblock m is the first macroblock
within a slice that needs to be decoded, and m′ is the last
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Figure 7: Maintaining Dependency List for a Frame

Figure 8: Run-time Optimization on Dependency

macroblock within the same slice that needs to be decoded.
The first segment consists of bits from the beginning of this
slice until m. This segment needs to sent, since they are
needed to maintain the syntax of the stream and to “get to”
m, but they need not be decoded. The second segment con-
sists of bits between m and m′. The third segment consists
of bits after m′. Bits in the last segment are neither needed
for parsing nor for decoding. Thus, we can truncate the slice
by not sending these bits. Robust decoders have the ability
to synchronize to the next slice in case the slice header is
not updated after truncation. However, updating the header
fields of a slice is needed for bit-stream compliance.

Figure 9: Slice Structure Impacts Transmission Overhead

6. EXPERIMENTAL EVALUATION
In this section, we outline various studies conducted to

compare the performance of monolithic streaming and tiled
streaming. The aim of the study is to understand the in-
fluence of slice size, motion vector length, and amount of
motion in the video on the performance of the two meth-
ods based on the bandwidth required to send a RoI. We
also evaluated the storage efficiency of the resulting video
compressed with these methods.

6.1 Experimental Data and Conditions

(a) Rush-Hour (b) Tractor

Figure 10: Screen-shots of Test Video Sequences.

We evaluate the two methods above using two standard
HD (1920 x 1080p) video files2. The first, called Tractor,
consists of 688 frames and has dense motion vectors, while
the second, called Rush-Hour, consists of 498 frames and has
comparatively less motion. Figure 10 shows a screen shot of

2Available at
ftp://ftp.ldv.e-technik.tu-muenchen.de/dist/test_sequences/1080p
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both videos. The two videos were encoded using full search
for motion compensation so that the motion vector length
can be as high as the specified maximum. We used FFM-
PEG3 for all encoding operations with full search, quantiza-
tion scale set to two, video codec being MPEG-4 simple scal-
able profile, and with a closed GoP structure of IBBPBBP.
As a low quantization value was chosen, the encoded video
rate is very high. The two videos were encoded for a com-
bination of maximum motion vector length (in pels) chosen
from {4, 8, 16, 24, 32, 40, 48, 64, 72} and slice size (in bytes)
chosen from {64, 128, 256, 512, 1460}. The specified motion
vector length is the maximum possible motion vector that
can be used while encoding. If the video has little motion,
then motion vectors tend to be short.

As a result of different slice size and motion vector length
combinations, there were 45 video samples for Rush-Hour
and Tractor. Further, these 45 samples were encoded with
a GoP length of 7 and 13. These 45 sample videos were
then subjected to a RoI-based transmission for various RoI
configurations. The width of the RoI (in macroblocks) was
from the set {15, 30, 45, 60, 90, 120} and the height (in mac-
roblocks) from the set {15, 30, 45, 60} macroblocks. As a re-
sult we had 24 RoI configurations, which can be categorized
into three sets: RoIs where width equals the height (square
RoIs), RoIs where width is greater than the height (wide
RoIs), and RoIs where the width is less than the height (tall
RoIs). For each RoI configuration, we conducted our eval-
uation at five randomly chosen locations in the frame. The
random locations were the same for both methods. When
reporting the results, we only show six different RoI dimen-
sions to avoid clutter. Similar trends were also observed for
the remaining 18 RoI dimensions.

The main metric that we measure is the average data rate
required when transmitting RoI of different dimensions. The
average data rate is computed as the number of bits that
would be transferred for a specific RoI dimension, averaged
over five random locations, when the video is played out
at 25 frames per second. It was observed that the PSNR
of the luminance component of tiled stream and monolithic
stream varied only in the second decimal place. Hence we do
not compare the two streaming approaches based on PSNR
readings.

The tile streaming method used the same FFMPEG en-
coder with the parameters described in the previous para-
graphs. We evaluated three different tile sizes (4x4 mac-
roblocks, 8x8 macroblocks, and 16x16 macroblocks). We
always refer to tile stream using 4x4 macroblocks unless ex-
plicitly referred to the other tile sizes.

The monolithic streaming method has two variants, one
which uses run-time optimization on the dependency and
the other without this optimization step. We always refer
to the optimized version unless explicitly stated otherwise.

6.2 Benefits of Motion Vector Dependency Op-
timization

We first evaluate the importance of run-time optimiza-
tion of motion vector dependency (described in Section 5.3)
when monolithic stream is used. Figure 11 shows the band-
width required with and without the run-time dependency
optimization for a slice of 64 bytes, using Rush-Hour and
Tractor with a GoP size of 13. We can see that optimiza-
tion helps in marginally reducing the data rate (of the order
3www.ffmpeg.org
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Figure 11: Run-Time Dependency List Optimization

of a few hundred kilo bits per second). Rush-Hour benefits
more from optimization than Tractor, although not signifi-
cantly.

6.3 Influence of Tile Size
Our next experiment evaluates the effects of tile size on

the effectiveness of tiled streaming. Figure 12 shows that
compressed file size of tiled streams for tile size of 4x4, 8x8,
and 16x16 macroblocks, using both Rush-Hour and Tractor
as test video sequences. As the tile size increases, the com-
pression ratio improves. This is expected since there are
less constraints for motion compensation. As the tile size
increases, tiled stream tends to display more of monolithic
stream characteristics.

As tile size increases, we need fewer bits to code each
macroblock. However, more macroblocks will be sent for the
same RoI size. To see if this factor would offset the savings
in improved compression, we plot Figure 13. The figure
shows the average data rate required for different tile sizes
and RoI sizes. We see that as tile size increases, more bits
are sent. Thus, the unnecessary macroblocks sent in each
tile have nullified the savings due to better compression.

For the rest of the experiments, we choose to use a tile
size of 4x4, since this yielded the best average data rate.
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Figure 12: Compression Efficiency with Different Tile Sizes

6.4 Influence of Motion Vector Size and Slice
Size on Compressed File Size

We know that increasing motion vector length and slice
size would improve compression of monolithic streams. To
see which parameter is more influential, we plot Figure 14,
showing how the compressed file size varies with motion vec-
tor length and slice size for Rush-Hour and Tractor. We can
see that increasing motion vector length significantly reduces
the file size, while larger slice sizes offer modest reduction in
file size. Nevertheless, a video with 64 byte slice is signifi-
cantly larger than a video with 128 byte slices.

The Tractor video can be compressed better even for mo-
tion vectors as long as 48 (Figure 14b) where as for Rush-
Hour, compression efficiency almost remains constant after
a motion vector size of 40 due to lesser motion in the video.

Next, we compare the compression efficiency of using mono-
lithic stream and tiled streams (calculated by summing up
the sizes of individual encoded tiled streams). Figure 15
shows that the compressed file size for Rush-Hour and Trac-
tor, using both methods with different motion vector length
and slice sizes. We can see that, the reduction in file size
when motion vector length increases is less significant for
tiled streams. Since motion vectors are restricted to within
a tile, allowing longer motion vectors does not help much and
regions which could have been encoded by motion compen-
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Figure 13: Data Rate with Different Tile Sizes

sation are now limited. As a result, tiled stream has higher
storage cost and needs to send more bits per macroblock.

6.5 Monolithic versus Tiled Streams
Figure 16 shows the data rate achieved for Rush-Hour

and Tractor (with slice size of 64 bytes). The graphs show
that monolithic streams leads to lower data rate than tiled
streams for both Rush-Hour and Tractor. For small RoIs
(15x15), tiled streams require about 1 Mbps than mono-
lithic stream. The differences increase as RoI size increases.
As the size of the RoI increases, the perimeter of the RoI
also increases. As a result, there are more number of tiles
falling on the perimeter, increasing the number of redun-
dant macroblocks sent. Since tiled streams uses more bits
per macroblocks, more data is sent using tiled stream.

Figure 17 shows the effect on data rate when the slice
size is increased to 1460 bytes. We see that tiled streams
now achieves much lower rate than monolithic stream. Long
slices result in significantly more VLC dependencies in the
a monolithic stream. When a macroblock m is needed, all
other macroblocks that come before m in the same slice
should be sent in order for m to be decodable. Although
using larger slices would reduce the compressed file size by
a few hundred kilo-bytes (Figure 15), its impact on mono-
lithic RoI streaming is adverse. Hence, it is better to encode
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Figure 14: Compression Efficiency of Monolithic Stream

a video with smaller slices, trading off a small increase in
storage space for a much lower data rate.

Another observation we can make from the figures above
is the effect of motion vector length. Allowing the encoder
to use long motion vectors results in reduced data rate for
any given RoI. Although use of longer motion vectors tends
to increase the amount and spread of motion vector depen-
dency, it also increases compression efficiency there by re-
ducing data rate.

6.6 Summary
Our experiments show the trade-off of different encoding

parameters and their effects on the bandwidth efficiency of
monolithic streaming and tiled streaming. We summarize
the most important observations below.

1. Larger slice size significantly increases the bandwidth
overhead of monolithic streaming. This overhead is
caused mainly by increase in VLC dependency rather
than decrease in compression efficiency.

2. Video with high motion causes significant bandwidth
overhead in tiled streams. This overhead is caused
mainly by decrease in compression efficiency and is
more significant in larger RoI.
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Figure 15: Compression Efficiency of Tiled Streams and
Monolithic Stream

3. Allowing longer motion vector range significantly im-
proves compression efficiency in monolithic stream, there
by reducing the data rate despite increasing depen-
dency in the video.

4. Using larger tiles significantly improves compression
efficiency in tiled streams, but would still lead to higher
bandwidth when streaming RoIs due to wasted trans-
mission of bits that do not contribute to the decoding
of RoI.

Our experiments point to monolithic stream as a more band-
width efficient method to stream RoI compared to tiled
streams in general, for different level of motion in video and
for different RoI sizes, as long as careful selection of encod-
ing parameters is exercised. As an additional advantage,
monolithic stream has better compression efficiency, leading
to smaller file sizes.

7. CONCLUSIONS AND FUTURE WORK
We presented two methods for RoI-based video trans-

mission to support zooming and panning. The first, tiled
streaming, breaks frames of a raw video stream into tiles
and encodes individual tiles using a standard encoder. The
requested RoI is met by sending tile streams that overlaps
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with the RoI. Monolithic stream uses a standard coded video
for streaming. A pre-processing stage is used to process
the video and build a macroblock dependency list. The re-
quested RoI is met by sending bits that are needed to de-
code the macroblocks within the RoI, through consulting
the dependency list. Our experimental results suggest that
monolithic stream with proper choice of parameters achieves
better bandwidth efficiency than tiled streams.

There are many possible directions this research can take.
Our next step is to consider a combination of tiled stream
and monolithic stream to stream a RoI. This hybrid stream-
ing method would analyze each tile stream and build a de-
pendency list. A tile stream that falls entirely within the
RoI is sent as is. A tile stream that falls on the border of
RoI would be sent as if it is a monolithic stream – only bits
that contribute to the RoI decoding are sent. We expect
that hybrid streaming would not gain much compared to
tiled streaming when small tiles are used, but might be able
to significantly reduce the redundant data sent for larger
tiles. Compared to monolithic streaming, hybrid streaming
restricts the propagation of motion vector dependency to
within a tile and could lead to better bandwidth efficiency.

The monolithic stream method would benefit from the use
of an efficient data structure for maintaining the dependency
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list. We plan to use a data structure that supports 2D range
search to reduce the computational cost of look-up.
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